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Abstract

A new method is developed for the solution of radiative transfer in a one-dimensional absorbing and isotropically scattering medium
with short-pulse irradiation on one of its boundaries. The time-dependent radiative intensity is expanded in a series of Laguerre poly-
nomials with time as the argument. Moments of the radiative transfer equation, as well as of the boundary conditions, then yield a set of
coupled time-independent radiative transfer problems. This set, in turn, is reduced to a set of algebraic equations by the application of the
Galerkin method. The transient transmittance and reflectance of the medium are evaluated for various values of the optical thickness,
scattering albedo and pulse duration. It is demonstrated that the Laguerre–Galerkin method is not only easier to implement and more
efficient but also yields more accurate results compared to the direct application of the Galerkin method. The results are in very good
agreement with those available in the literature.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent applications of transient radiative transfer in
participating media involved extremely small time scales.
Short-pulse lasers are being used to investigate properties
of scattering and absorbing media in such applications as
optical tomography, remote sensing, and combustion prod-
uct analysis. In such applications, the time derivative of the
radiation intensity in the radiative transfer equation cannot
be neglected since its order of magnitude becomes compa-
rable to that of the other terms in the equation.

Several techniques have been developed lately for the
solution of transient radiative transfer problems in partic-
ipating media. Kumar et al. [1,2] developed the two-flux,
PN and discrete ordinates approximate formulations.
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Mitra et al. [3] extended the P1 approximation to two-
dimensional enclosures. Kumar and Mitra [4,5] reviewed
various approximate models, and developed regime maps
for a proper model selection based on the specific applica-
tion. Another application of the discrete ordinates method
was performed by Sakami et al. [6] by implementing a high
order upwind piecewise parabolic interpolation scheme to
solve transient radiation in two-dimensional media. The
integral formulation of the transient radiation, initially
introduced by Pomraning [7], was improved and imple-
mented by several researchers. Among those, Wu and
Wu [8] developed the integral equation formulation for
transient radiative transfer in a 3D absorbing and aniso-
tropically scattering medium, and applied the formulation
to solve the transient radiation in two-dimensional cylin-
drical, nonhomogeneous, absorbing and linearly scattering
media [9]. Wu [10] also solved an exact integral equa-
tion formulation by an adaptation of the quadrature
method. Another time-dependent integral formulation
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was developed by Tan and Hsu [11] who analyzed the
wave propagation process inside the participating media.
Later, they extended their one-dimensional integral equa-
tion model to three-dimensional geometry [12]. Guo and
Kumar [13] presented a formulation by the radiation ele-
ment method to solve transient radiative transfer with
light radiation propagation effects in an inhomogeneous,
scattering, absorbing, and emitting medium. A hybrid
method based on the modified differential approximation
suggested by Chandrasekhar [14] and the P1/3 approxima-
tion was developed by Wu and Ou [15]. A three dimen-
sional Monte Carlo simulation of transient radiative
transfer, supported by an experimental study, has been
performed by Guo et al. [16,17]. Rath et al. [18] extended
the discrete transfer method to solve transient radiation
problems in a participating medium subjected to a short-
pulse laser irradiation. Chai [19] utilized a finite-volume
method to calculate transient radiative transfer in a one-
dimensional slab. Kim and Guo [20] applied the discrete
ordinates method to the transient radiation problems in
cylindrical geometries which appear in laser tissue welding
and soldering. Boulanger and Charette [21] presented a
numerical tool to study short-pulse laser beam interaction
with nonhomogeneous matter. Trivedi et al. [22] performed
an experimental study for the measurement of temporal
reflected and transmitted signals from tissue phantoms with
or without inhomogeneities due to short-pulse laser irradi-
ation. They also validated the experimental measurements
by solving the two-dimensional transient radiative transfer
equation using the discrete ordinates method. Lu and Hsu
[23] studied the transient radiation transport in multi-layer
media by the reverse Monte Carlo simulation technique.
Recently, Mishra et al. [24] presented a general formulation
of the transient radiative transfer equation applicable to a
3D Cartesian enclosure, and compared the three commonly
used methods, namely, the discrete transfer method, the dis-
crete ordinates method and the finite volume method.

In their semi-analytical numerical study, de Oliveira
et al. [25] considered an isotropically scattering medium
of slab geometry and expanded the transient intensity of
radiation by a truncated series of Laguerre polynomials
in the time variable. They obtained a set of time-indepen-
dent discrete ordinates problems which were then solved
by a hybrid method combining the spectral and the Laplace
transform methods. Another Laguerre expansion, in time
variable, of the radiation intensity is introduced by Hassan
et al. [26] for investigating radiative transfer through a
semiconductor or a dielectric film using the single relaxa-
tion time approximation to the Boltzmann equation. They
applied the Galerkin method to solve the resulting time-
independent equation.

Okutucu et al. [27] extended the Galerkin technique for
the solution of transient radiative transfer in a one-dimen-
sional absorbing and isotropically scattering plane-parallel
gray medium irradiated with a short-pulse laser of rectan-
gular profile on one of its boundaries. The authors further
applied the method to the transient case of short-pulse
Gaussian irradiation [28]. In both cases, the Galerkin
method was extended to study the ensuing transient radia-
tive transfer in the medium. In these two applications, the
integral form of the radiative transfer equation for the
time-dependent source function was transformed into a
set of ordinary differential equations for the time-depen-
dent expansion coefficients of the power series expansion
of the source function. Although the method proved to
be relatively simple to implement and the results agreed
well with those available in the literature, it was not found
to be efficient in that, at the end, a set of ordinary differen-
tial equations had to be solved numerically over the time
spectrum. It was, therefore, concluded that the method
would not be an effective tool if it were to be extended to
study interaction problems.

In the present study, in an effort to improve the effective-
ness of the Galerkin method, a new solution technique is
developed for a one-dimensional absorbing and isotropi-
cally scattering plane-parallel gray medium with short-
pulse irradiation of rectangular profile. Following the work
of Hassan et al. [26], first, the time-dependent radiative
intensity is expanded in a series of Laguerre polynomials
with time as the argument. Next, moments of the radiative
transfer equation, as well as of the boundary conditions,
are taken in accordance with the orthogonality property
of the Laguerre polynomials to obtain a set of coupled
time-independent radiative transfer problems. This set, in
turn, is reduced to a set of algebraic equations by the appli-
cation of the Galerkin method. The transient transmittance
and reflectance of the medium are evaluated and compared
with previously obtained results. Recently, the authors
have also discussed an approximate version of the method
developed here to study transient radiative transfer with
short-pulse irradiation of Gaussian profile [29].

It is demonstrated that the Laguerre–Galerkin technique
is not only easier to implement and more efficient but also
yields more accurate results compared to the direct applica-
tion of the Galerkin method. The results are in very good
agreement with those available in the literature.

2. Formulation

Consider the radiative transfer problem depicted in
Fig. 1. The medium is non-emitting, absorbing, isotropi-
cally scattering and plane-parallel. It is also considered to
have azimuthal symmetry with constant absorption coeffi-
cient j and scattering coefficient r. The two boundaries at
x = 0 and x = L are non-reflecting and non-refracting
(with refractive index n = 1). The boundary at x = 0 is irra-
diated by a collimated rectangular pulse from a directionbX0 (of polar angle h0 and azimuthal angle /0). It can be
shown that the intensity Idðs; l; tÞ of the transient diffuse
radiation field, which results from the isotropically out-
scattered radiation from the collimated component
Icðs; l; tÞ travelling through the medium, satisfies the fol-
lowing form of the transient radiative transfer equation
[27,28,30]:



Fig. 1. Schematic representation of boundary conditions.
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with the initial condition wðs; l; 0Þ ¼ 0 and the two bound-
ary conditions

wð0; l; t�Þ ¼ 0; l > 0 ð2aÞ
wðs0;�l; t�Þ ¼ 0; l > 0 ð2bÞ

where wðs; l; t�Þ is the dimensionless diffuse intensity de-
fined as

wðs; l; t�Þ ¼ Idðs; l; t�Þ
q0=p

ð3Þ

In these relations, t� ¼ ðjþ rÞct represents the dimension-
less time where c is the speed of light in the medium,
x ¼ r=ðjþ rÞ denotes the scattering albedo, s ¼
2ðjþ rÞx is the optical variable and s0 ¼ 2ðjþ rÞL is the
optical thickness of the medium. Moreover, q0 is the total
radiative flux of the collimated irradiation through a sur-
face normal to bX0.

In Eq. (1), the second term on the right-hand side repre-
sents the source for the dimensionless scattered radiation
field intensity wðs; l; t�Þ due to the isotropically out-scat-
tered radiation from the collimated component in the med-
ium, and the term F ðs; t�Þ is given by
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2l0

� �
� H t� � t�p �

s
2l0

� �� �

¼
1; t� 2 s

2l0

;
s

2l0

þ t�p

� �
0; t� 62 s

2l0

;
s

2l0

þ t�p

� �
8>>><>>>: ð4Þ

where t�p ¼ ðjþ rÞctp is the dimensionless pulse width, and
Hðt�Þ represents the Heaviside step function.
The dimensionless intensity wðs; l; t�Þ is now expanded
in a truncated series of Laguerre polynomials Lkðt�Þ as
follows:

wðs; l; t�Þ ¼
XK

k¼0

/ðkÞðs; lÞLkðt�Þ ð5Þ

Next, the expansion (5) is substituted into Eq. (1). The mo-
ments of the resultant relation are then taken by first mul-
tiplying it by et�Lkðt�Þ and integrating over t� 2 ð0;1Þ to
yield

2l
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In obtaining Eq. (6), use has been made of the orthogonal-
ity property of the Laguerre polynomials Lk(x),
k = 0,1,2, . . ., given by [31]Z 1

0

e�xLkðxÞLlðxÞdx ¼ dkl ð8Þ

where dkl is the Kronecker delta, and of the relation [32]
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dt�
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Noting that Lkð0Þ ¼ 1, substitution of the expansion (5)
into the initial condition wðs; l; 0Þ ¼ 0, on the other hand,
gives

XK

k¼0

/ðkÞðs; lÞ ¼ 0 ð10Þ

Combining Eqs. (6) and (10), together with the substitution
of the expansion (5) into the boundary conditions (2a) and
(2b), now yields the following set of coupled steady-state
radiative transfer problems

l
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/ðlÞðs0;�lÞ ¼ 0; l > 0 ð12bÞ

In Eq. (11), the terms SðlÞðsÞ represent the source functions
and are given by
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where the terms GðlÞðsÞ are defined as

GðlÞðsÞ ¼ 1

2

Z 1

�1

/ðlÞðs; l0Þdl0; l ¼ 0; 1; 2; . . . ;K ð14Þ

which represent the angular averages of the steady-state
intensities of the coupled radiation problems defined by
Eqs. (11), (12a) and (12b).

In defining the source functions SðlÞðsÞ in Eq. (13), the
following approximation was introduced:

Xl�1

k¼0

/ðkÞðs; lÞ ffi
Xl�1

k¼0

GðkÞðsÞ ð15Þ

which stipulates that the effects of /ðkÞðs; lÞ when k ¼ 0;
1; 2; . . . ; l� 1 on /ðlÞðs; lÞ is the same as the effects of
GðkÞðsÞ; k ¼ 0; 1; 2; . . . ; l� 1.

2.1. Formal solutions for /ðlÞðs; lÞ

Integrating Eq. (11) over the optical variable s from
s = 0 to any s for l > 0, together with the use of the condi-
tion (12a), gives

/ðlÞðs; lÞ ¼ 1

l

Z s

0

e�ðs�s0Þ=lSðlÞðs0Þds0; l > 0 ð16aÞ

Similarly, integrating Eq. (11) from any s to s ¼ s0 for
l < 0, together with the use of the condition (12b), yields

/ðlÞðs;�lÞ ¼ 1

l
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s
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Eqs. (16a) and (16b) are formal solutions for /ðlÞðs; lÞ.
They do not represent a complete solution since both rela-
tions are expressed in terms of SðlÞðsÞ, which in turn de-
pends on /ðlÞðs; lÞ as indicated by Eqs. (13) and (14).

2.2. Integral equation for SðlÞðsÞ

Substitution of the formal solutions (16a) and (16b)
into Eq. (14) yields

GðlÞðsÞ ¼ 1

2

Z s0
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which, when substituted into Eq. (13), gives
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where En(x) is the exponential integral function.
Eq. (18) represents a set of coupled singular integral

equations for the source functions SðlÞðsÞ. In the following
section, following the procedure introduced by Özıs�ık and
Yener [33], a Galerkin method of solution is described to
obtain SðlÞðsÞ from Eq. (18).
3. Solution to SðlÞðsÞ by Galerkin method

Following the method introduced in [33], the source
functions SðlÞðsÞ are first expanded in a power series as

SðlÞðsÞ ¼
XN

n¼0

CðlÞn sn; l ¼ 0; 1; 2; . . . ;K ð19Þ

where CðlÞn are the unknown expansion coefficients to be
determined by the application of the Galerkin method.
Next, the expansion (19) is substituted into the integral
equation (18), and then the resultant equations are inte-
grated over s from s = 0 to s ¼ s0 after they have been
multiplied by sm. This operation yields, for each
l ¼ 0; 1; 2; . . . ;K, the following set of N + 1 algebraic equa-
tions for the determination of the unknown expansion
coefficients CðlÞn :XN

n¼0
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and Cðn; xÞ represents the upper incomplete Gamma func-

tion. Furthermore, in Eq. (20), the constants Bmn are given
by

Bmn ¼
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Fig. 2. Effect of optical thickness on transmittance for N = 4, K = 59.
4. Local radiative flux

The local radiative flux is given in dimensionless form by
[30]

Qðs; t�Þ ¼ qðs; t�Þ
q0

¼ Qþðs; t�Þ � Q�ðs; t�Þ ð28Þ

where qðs; t�Þ is the local radiative flux in the medium, and
the dimensionless forward and backward radiative fluxes
Q�ðs; t�Þ are given by

Qþðs; t�Þ ¼ l0 e�s=ð2l0ÞF ðs; t�Þ þ 2

Z 1

0

wðs; l; t�Þldl;

t� P s=2 ð29aÞ

Q�ðs; t�Þ ¼ 2

Z 1

0

wðs;�l; t�Þldl; t� P s=2 ð29bÞ

In Eq. (29a), the first term on the right-hand side repre-
sents the contribution to the forward flux at location s
and time t� of the attenuating collimated component,
whereas the second term is the contribution of the scat-
tered radiation field. For the backward flux, the only con-
tribution comes from the scattered radiation field as
indicated in Eq. (29b).

5. Results and discussion

The boundary at x = 0 is considered to be irradiated
perpendicularly (i.e., l0 = 1) with a short-pulse collimated
irradiation of rectangular profile. The transient transmit-
tance and reflectance of the medium are obtained for differ-
ent values of the optical thickness s0, scattering albedo x
and the pulse width t�p. The transient transmittance is
defined as the net dimensionless radiative flux emerging
out of the medium, and in the problem under consideration
it is the net forward dimensionless radiative flux at s ¼ s0;
that is
Qþðs0; t�Þ ¼l0 e�s0=ð2l0ÞF ðs0; t�Þþ2
XK

k¼0

Lkðt�Þ
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n¼0
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n�a
0

( )
; t�P s0=2

ð30Þ

Similarly, the reflectance, which is the net radiative flux
from the boundary at s = 0, is

Q�ð0; t�Þ¼ 2
XK

k¼0

Lkðt�Þ
XN

n¼0

CðkÞn n!
1

nþ2
�
Xn

a¼0
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( )
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It should be noted that the coefficients CðkÞn of the power
series expansion (19) are constants, hence, can easily be
evaluated from the solution of the set of N + 1 algebraic
equations (20) for each k ¼ 0; 1; 2; . . . ;K. A Gauss elimina-
tion algorithm with pivoting is utilized to obtain the coef-
ficients. Once they are calculated, the transmittance,
Qþðs0; t�Þ, and the reflectance, Q�ð0; t�Þ, of the medium
are readily obtained from Eqs. (30) and (31).

Calculations were performed in the C programming
environment to evaluate the transient behavior of both
transmittance and reflectance for various values of the opti-
cal thickness, pulse duration and scattering albedo. The
dimensionless time step was taken as Dt� ¼ 0:001, which
was found to be the optimum value below which no signif-
icant improvement in the results was observed.

For small to moderate optical thicknesses, convergence
was reached with as few as five terms in the truncated
power series expansion in optical thickness, and 60 terms
in the truncated Laguerre expansion in time. It was decided
that convergence was achieved when the addition of more
terms did not change the value of the dimensionless trans-
mittance or reflectance by more than 10�5.

Fig. 2 illustrates the effect of the optical thickness on
transmittance for t�p ¼ 1 and x ¼ 0:998. The time at which
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the first transmitted radiation is observed at s0 depends on
the optical thickness of the medium. It takes t� ¼ s0=2 for
the collimated component to traverse the medium. Once
the collimated signal exits the medium at t� ¼ t�p þ s0=2, a
sudden decrease in the transmitted flux is observed. As
expected, the peak value of the transmittance is higher
for optically thinner media due to stronger collimated com-
ponent that exits the medium. The decay rate beyond
t� ¼ t�p þ s0=2 decreases with increasing optical thickness
since it takes longer time for the scattered signals to exit
the medium in the optically thicker cases.

The corresponding reflectance behavior is presented in
Fig. 3 again for t�p ¼ 1 and x ¼ 0:998. The reflected radia-
tion is observed as soon as the irradiation hits the bound-
ary at s = 0. The dependence of the peak value on the
optical thickness is not as strong as that for transmittance.
On the other hand, as the optical thickness increases, the
backscattered signal is observed for a longer period of time.
It is also noted from Fig. 3 that the reflectance curves get
closer to each other as the optical thickness increases. It
is also observed that the stability of the results are better
for s0 6 3.

The effect of the pulse duration on the transient behav-
ior of transmittance for t�p ¼ 0:1; 1 and 2 is shown for
x = 0.998 in Fig. 4. For the case of t�p ¼ 0:1, a smaller
dimensionless time step of 0.0001 was used for better con-
vergence. As the pulse duration becomes comparable to or
larger than the optical thickness, a smoother transmittance
curve is obtained. The strength and duration of the trans-
mitted signal increases with increasing pulse length, as
expected. The dependence of reflectance on the pulse dura-
tion is given in Fig. 5.

In Fig. 6, the effect of the scattering albedo on transmit-
tance is illustrated for a medium with an optical thickness
of s0 ¼ 2 and for t�p ¼ 1. It is shown that the transmitted
signal is available for longer periods of time, and its peak
value is higher for increased scattering albedo values. As
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indicated in Fig. 7, the reflectance of the medium shows a
similar behavior; that is, a higher peak value and a longer
duration of the signal at a higher value of the scattering
albedo.

The results are also compared with those obtained by
the discrete transfer and the piecewise parabolic advection
methods [18] and an excellent agreement is reached. Figs. 8
and 9 compare the transmittance and reflectance results,
respectively, for s0 ¼ 2; t�p ¼ 1 and x ¼ 0:998.
6. Conclusions

An improved solution technique has been developed for
the transient radiative transfer problem in a participating
medium one boundary of which is exposed to short-pulse
irradiation of rectangular profile. In this technique, the
time-dependent dimensionless radiative intensity within
the one-dimensional, absorbing, non-emitting and isotrop-
ically scattering medium is expanded in a series of Laguerre
polynomials with time as the argument. The moments of
the radiative transfer equation, as well as of the boundary
conditions, are then taken in accordance with the orthogo-
nality property of the Laguerre polynomials, yielding a set
of coupled time-independent radiative transfer problems.
This set, in turn, is reduced to a set of algebraic equations
utilizing the Galerkin method. The transient transmittance
and reflectance are re-evaluated and compared with previ-
ously obtained ones. It has been demonstrated that this
approach is not only more efficient but also yields results
that agree very well with those available in the literature.
More accurate results have been obtained compared to
the direct application of the Galerkin method. It should
also be noted that the method works better for small to
moderate optical thicknesses where the hyperbolic approx-
imations reported in the literature seem to fail.
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